3.4.24 \(\int \cos ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\) [324]

Optimal. Leaf size=117 \[ \frac {a (a+4 b) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{8 b^{3/2} f}+\frac {(a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 b f}-\frac {\sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 b f} \]

[Out]

1/8*a*(a+4*b)*arctanh(sin(f*x+e)*b^(1/2)/(a+b*sin(f*x+e)^2)^(1/2))/b^(3/2)/f-1/4*sin(f*x+e)*(a+b*sin(f*x+e)^2)
^(3/2)/b/f+1/8*(a+4*b)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/b/f

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3269, 396, 201, 223, 212} \begin {gather*} \frac {a (a+4 b) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{8 b^{3/2} f}-\frac {\sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 b f}+\frac {(a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 b f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^3*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(a*(a + 4*b)*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/(8*b^(3/2)*f) + ((a + 4*b)*Sin[e + f*
x]*Sqrt[a + b*Sin[e + f*x]^2])/(8*b*f) - (Sin[e + f*x]*(a + b*Sin[e + f*x]^2)^(3/2))/(4*b*f)

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 3269

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \cos ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx &=\frac {\text {Subst}\left (\int \left (1-x^2\right ) \sqrt {a+b x^2} \, dx,x,\sin (e+f x)\right )}{f}\\ &=-\frac {\sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 b f}+\frac {(a+4 b) \text {Subst}\left (\int \sqrt {a+b x^2} \, dx,x,\sin (e+f x)\right )}{4 b f}\\ &=\frac {(a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 b f}-\frac {\sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 b f}+\frac {(a (a+4 b)) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{8 b f}\\ &=\frac {(a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 b f}-\frac {\sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 b f}+\frac {(a (a+4 b)) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{8 b f}\\ &=\frac {a (a+4 b) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{8 b^{3/2} f}+\frac {(a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{8 b f}-\frac {\sin (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2}}{4 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 125, normalized size = 1.07 \begin {gather*} \frac {\sqrt {a+b \sin ^2(e+f x)} \left (\sqrt {a} (a+4 b) \sinh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a}}\right )-\sqrt {b} \sin (e+f x) \left (a-4 b+2 b \sin ^2(e+f x)\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right )}{8 b^{3/2} f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^3*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(Sqrt[a + b*Sin[e + f*x]^2]*(Sqrt[a]*(a + 4*b)*ArcSinh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a]] - Sqrt[b]*Sin[e + f*x]*
(a - 4*b + 2*b*Sin[e + f*x]^2)*Sqrt[1 + (b*Sin[e + f*x]^2)/a]))/(8*b^(3/2)*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a])

________________________________________________________________________________________

Maple [A]
time = 7.82, size = 144, normalized size = 1.23

method result size
default \(\frac {-\frac {\left (\sin ^{3}\left (f x +e \right )\right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}}{4}-\frac {a \sin \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}}{8 b}+\frac {a^{2} \ln \left (\sin \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\right )}{8 b^{\frac {3}{2}}}+\frac {\sin \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}}{2}+\frac {a \ln \left (\sin \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\right )}{2 \sqrt {b}}}{f}\) \(144\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-1/4*sin(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2)-1/8/b*a*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)+1/8/b^(3/2)*a^2*ln(sin
(f*x+e)*b^(1/2)+(a+b*sin(f*x+e)^2)^(1/2))+1/2*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)+1/2*a*ln(sin(f*x+e)*b^(1/2)+
(a+b*sin(f*x+e)^2)^(1/2))/b^(1/2))/f

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 127, normalized size = 1.09 \begin {gather*} \frac {\frac {a^{2} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b}}\right )}{b^{\frac {3}{2}}} + \frac {4 \, a \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b}}\right )}{\sqrt {b}} + 4 \, \sqrt {b \sin \left (f x + e\right )^{2} + a} \sin \left (f x + e\right ) - \frac {2 \, {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sin \left (f x + e\right )}{b} + \frac {\sqrt {b \sin \left (f x + e\right )^{2} + a} a \sin \left (f x + e\right )}{b}}{8 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

1/8*(a^2*arcsinh(b*sin(f*x + e)/sqrt(a*b))/b^(3/2) + 4*a*arcsinh(b*sin(f*x + e)/sqrt(a*b))/sqrt(b) + 4*sqrt(b*
sin(f*x + e)^2 + a)*sin(f*x + e) - 2*(b*sin(f*x + e)^2 + a)^(3/2)*sin(f*x + e)/b + sqrt(b*sin(f*x + e)^2 + a)*
a*sin(f*x + e)/b)/f

________________________________________________________________________________________

Fricas [A]
time = 0.65, size = 511, normalized size = 4.37 \begin {gather*} \left [\frac {{\left (a^{2} + 4 \, a b\right )} \sqrt {b} \log \left (128 \, b^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a b^{3} + 2 \, b^{4}\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{2} b^{2} + 24 \, a b^{3} + 24 \, b^{4}\right )} \cos \left (f x + e\right )^{4} + a^{4} + 32 \, a^{3} b + 160 \, a^{2} b^{2} + 256 \, a b^{3} + 128 \, b^{4} - 32 \, {\left (a^{3} b + 10 \, a^{2} b^{2} + 24 \, a b^{3} + 16 \, b^{4}\right )} \cos \left (f x + e\right )^{2} - 8 \, {\left (16 \, b^{3} \cos \left (f x + e\right )^{6} - 24 \, {\left (a b^{2} + 2 \, b^{3}\right )} \cos \left (f x + e\right )^{4} - a^{3} - 10 \, a^{2} b - 24 \, a b^{2} - 16 \, b^{3} + 2 \, {\left (5 \, a^{2} b + 24 \, a b^{2} + 24 \, b^{3}\right )} \cos \left (f x + e\right )^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {b} \sin \left (f x + e\right )\right ) + 8 \, {\left (2 \, b^{2} \cos \left (f x + e\right )^{2} - a b + 2 \, b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sin \left (f x + e\right )}{64 \, b^{2} f}, -\frac {{\left (a^{2} + 4 \, a b\right )} \sqrt {-b} \arctan \left (\frac {{\left (8 \, b^{2} \cos \left (f x + e\right )^{4} - 8 \, {\left (a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 8 \, a b + 8 \, b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-b}}{4 \, {\left (2 \, b^{3} \cos \left (f x + e\right )^{4} + a^{2} b + 3 \, a b^{2} + 2 \, b^{3} - {\left (3 \, a b^{2} + 4 \, b^{3}\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) - 4 \, {\left (2 \, b^{2} \cos \left (f x + e\right )^{2} - a b + 2 \, b^{2}\right )} \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sin \left (f x + e\right )}{32 \, b^{2} f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/64*((a^2 + 4*a*b)*sqrt(b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^2*b^2 +
 24*a*b^3 + 24*b^4)*cos(f*x + e)^4 + a^4 + 32*a^3*b + 160*a^2*b^2 + 256*a*b^3 + 128*b^4 - 32*(a^3*b + 10*a^2*b
^2 + 24*a*b^3 + 16*b^4)*cos(f*x + e)^2 - 8*(16*b^3*cos(f*x + e)^6 - 24*(a*b^2 + 2*b^3)*cos(f*x + e)^4 - a^3 -
10*a^2*b - 24*a*b^2 - 16*b^3 + 2*(5*a^2*b + 24*a*b^2 + 24*b^3)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)
*sqrt(b)*sin(f*x + e)) + 8*(2*b^2*cos(f*x + e)^2 - a*b + 2*b^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sin(f*x + e))/
(b^2*f), -1/32*((a^2 + 4*a*b)*sqrt(-b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + 2*b^2)*cos(f*x + e)^2 + a^2
 + 8*a*b + 8*b^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-b)/((2*b^3*cos(f*x + e)^4 + a^2*b + 3*a*b^2 + 2*b^3 -
(3*a*b^2 + 4*b^3)*cos(f*x + e)^2)*sin(f*x + e))) - 4*(2*b^2*cos(f*x + e)^2 - a*b + 2*b^2)*sqrt(-b*cos(f*x + e)
^2 + a + b)*sin(f*x + e))/(b^2*f)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**3*(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.53, size = 96, normalized size = 0.82 \begin {gather*} -\frac {\sqrt {b \sin \left (f x + e\right )^{2} + a} {\left (2 \, \sin \left (f x + e\right )^{2} + \frac {a b - 4 \, b^{2}}{b^{2}}\right )} \sin \left (f x + e\right ) + \frac {{\left (a^{2} + 4 \, a b\right )} \log \left ({\left | -\sqrt {b} \sin \left (f x + e\right ) + \sqrt {b \sin \left (f x + e\right )^{2} + a} \right |}\right )}{b^{\frac {3}{2}}}}{8 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^3*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

-1/8*(sqrt(b*sin(f*x + e)^2 + a)*(2*sin(f*x + e)^2 + (a*b - 4*b^2)/b^2)*sin(f*x + e) + (a^2 + 4*a*b)*log(abs(-
sqrt(b)*sin(f*x + e) + sqrt(b*sin(f*x + e)^2 + a)))/b^(3/2))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (e+f\,x\right )}^3\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(e + f*x)^3*(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(cos(e + f*x)^3*(a + b*sin(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________